
NAG C Library Function Document

nag_mesh2d_join (d06dbc)

1 Purpose

nag_mesh2d_join (d06dbc) joins together (restitches) two adjacent, or overlapping, meshes.

2 Specification

#include <nag.h>
#include <nagd06.h>

void nag_mesh2d_join (double eps, Integer nv1, Integer nelt1, Integer nedge1,
const double coor1[], const Integer edge1[], const Integer conn1[],
const Integer reft1[], Integer nv2, Integer nelt2, Integer nedge2,
const double coor2[], const Integer edge2[], const Integer conn2[],
const Integer reft2[], Integer *nv3, Integer *nelt3, Integer *nedge3,
double coor3[], Integer edge3[], Integer conn3[], Integer reft3[],
Integer itrace, const char *outfile, NagError *fail)

3 Description

nag_mesh2d_join (d06dbc) joins together two adjacent, or overlapping, meshes. If the two meshes are
adjacent then vertices belonging to the part of the boundary forming the common interface should
coincide. If the two meshes overlap then vertices and triangles in the overlapping zone should coincide
too.

This function is partly derived from material in the MODULEF package from INRIA (Institut National de
Recherche en Informatique et Automatique).

4 References

None.

5 Arguments

1: eps – double Input

On entry: the relative precision of the restitching of the two input meshes (see Section 8).

Suggested value: 0:001.

Constraint: eps > 0:0.

2: nv1 – Integer Input

On entry: the total number of vertices in the first input mesh.

Constraint: nv1 � 3.

3: nelt1 – Integer Input

On entry: the number of triangular elements in the first input mesh.

Constraint: nelt1 � 2� nv1� 1.

4: nedge1 – Integer Input

On entry: the number of boundary edges in the first input mesh.

Constraint: nedge1 � 1.

d06 – Mesh Generation d06dbc

[NP3660/8] d06dbc.1

5: coor1½2� nv1� – const double Input

On entry: coor1½2� i� 1ð Þ� contains the x co-ordinate of the ith vertex of the first input mesh, for
i ¼ 1; . . . ; nv1; while coor1½2� i� 1ð Þ þ 1� contains the corresponding y co-ordinate.

6: edge1½3� nedge1� – const Integer Input

On entry: the specification of the boundary edges of the first input mesh. edge1½3� j� 1ð Þ� and
edge1½3� j� 1ð Þ þ 1� contain the vertex numbers of the two end points of the jth boundary edge.
edge1½3� j� 1ð Þ þ 2� is a user-supplied tag for the jth boundary edge.

Constraint: 1 � edge1½3� j� 1ð Þ þ i� 1� � nv1 and
edge1½3� j� 1ð Þ� 6¼ edge1½3� j� 1ð Þ þ 1�, for i ¼ 1; 2 and j ¼ 1; 2; . . . ;nedge1.

7: conn1½3� nelt1� – const Integer Input

On entry: the connectivity between triangles and vertices of the first input mesh. For each triangle j,
conn1½3� j� 1ð Þ þ i� 1� gives the indices of its three vertices (in anticlockwise order), for
i ¼ 1; 2; 3 and j ¼ 1; . . . ; nelt1.

Constraints:

1 � conn1½3� j� 1ð Þ þ i� 1� � nv1;
conn1½3� j� 1ð Þ� 6¼ conn1½3� j� 1ð Þ þ 1�;
conn1½3� j� 1ð Þ� 6¼ conn1½3� j� 1ð Þ þ 2� and
conn1½3� j� 1ð Þ þ 1� 6¼ conn1½3� j� 1ð Þ þ 2�, for i ¼ 1; 2; 3 and j ¼ 1; 2; . . . ; nelt1.

8: reft1½nelt1� – const Integer Input

On entry: reft1½k � 1� contains the user-supplied tag of the kth triangle from the first input mesh, for
k ¼ 1; . . . ;nelt1.

9: nv2 – Integer Input

On entry: the total number of vertices in the second input mesh.

Constraint: nv2 � 3.

10: nelt2 – Integer Input

On entry: the number of triangular elements in the second input mesh.

Constraint: nelt2 � 2� nv2� 1.

11: nedge2 – Integer Input

On entry: the number of boundary edges in the second input mesh.

Constraint: nedge2 � 1.

12: coor2½2� nv2� – const double Input

On entry: coor2½2� i� 1ð Þ� contains the x co-ordinate of the ith vertex of the second input mesh,
for i ¼ 1; . . . ; nv2; while coor2½2� i� 1ð Þ þ 1� contains the corresponding y co-ordinate.

13: edge2½3� nedge2� – const Integer Input

On entry: the specification of the boundary edges of the second input mesh. edge2½3� j� 1ð Þ� and
edge2½3� j� 1ð Þ þ 1� contain the vertex numbers of the two end points of the jth boundary edge.
edge2½3� j� 1ð Þ þ 2� is a user-supplied tag for the jth boundary edge.

Constraint: 1 � edge2½3� j� 1ð Þ þ i� 1� � nv2 and
edge2½3� j� 1ð Þ� 6¼ edge2½3� j� 1ð Þ þ 1�, for i ¼ 1; 2 and j ¼ 1; 2; . . . ;nedge2.

d06dbc NAG C Library Manual

d06dbc.2 [NP3660/8]

14: conn2½3� nelt2� – const Integer Input

On entry: the connectivity between triangles and vertices of the second input mesh. For each
triangle j, conn2½3� j� 1ð Þ þ i� 1� gives the indices of its three vertices (in anticlockwise order),
for i ¼ 1; 2; 3 and j ¼ 1; . . . ; nelt2.

Constraints:

1 � conn2½3� j� 1ð Þ þ i� 1� � nv2;
conn2½3� j� 1ð Þ� 6¼ conn2½3� j� 1ð Þ þ 1�;
conn2½3� j� 1ð Þ� 6¼ conn2½3� j� 1ð Þ þ 2� and
conn2½3� j� 1ð Þ þ 1� 6¼ conn2½3� j� 1ð Þ þ 2�, for i ¼ 1; 2; 3 and j ¼ 1; 2; . . . ; nelt2.

15: reft2½nelt2� – const Integer Input

On entry: reft2½k � 1� contains the user-supplied tag of the kth triangle from the second input mesh,
for k ¼ 1; . . . nelt2.

16: nv3 – Integer * Output

On exit: the total number of vertices in the resulting mesh.

17: nelt3 – Integer * Output

On exit: the number of triangular elements in the resulting mesh.

18: nedge3 – Integer * Output

On exit: the number of boundary edges in the resulting mesh.

19: coor3½dim� – double Output

Note: the dimension, dim, of the array coor3 must be at least 2� 2� nv1þ nv2ð Þð Þ. This may be
reduced to nv3 once that value is known.

On exit: coor3½2� iþ 1� will contain the x co-ordinate of the ith vertex of the resulting mesh, for
i ¼ 1; . . . ; nv3; while coor3½2� iþ 2� will contain the corresponding y co-ordinate.

20: edge3½dim� – Integer Output

Note: the dimension, dim, of the array edge3 must be at least 3� 3� nedge1þ nedge2ð Þð Þ. This may
be reduced to nedge3 once that value is known.

On exit: the specification of the boundary edges of the resulting mesh. edge3½3� j� 1ð Þ þ i� 1�
will contain the vertex number of the ith end point (i ¼ 1; 2) of the jth boundary or interface edge.

If the two meshes overlap, edge3½3� j� 1ð Þ þ 2� will contain the same tag as the corresponding
edge belonging to the first and/or the second input mesh.

If the two meshes are adjacent,

(i) if the jth edge is part of the partition interface, then edge3½3� j� 1ð Þ þ 2� will contain the
value 1000� k1 þ k2 where k1 and k2 are the tags for the same edge of the first and the second
mesh respectively;

(ii) otherwise, edge3½3� j� 1ð Þ þ 2� will contain the same tag as the corresponding edge
belonging to the first and/or the second input mesh.

21: conn3½dim� – Integer Output

Note: the dimension, dim, of the array conn3 must be at least 3� 3� nelt1þ nelt2ð Þð Þ. This may be
reduced to nelt3 once that value is known.

On exit: the connectivity between triangles and vertices of the resulting mesh.
conn3½3� j� 1ð Þ þ i� 1� will give the indices of its three vertices (in anticlockwise order), for
i ¼ 1; 2; 3 and j ¼ 1; . . . ; nelt3.

d06 – Mesh Generation d06dbc

[NP3660/8] d06dbc.3

22: reft3½dim� – Integer Output

Note: the dimension, dim, of the array reft3 must be at least nelt1þ nelt2. This may be reduced to
nelt3 once that value is known.

On exit: if the two meshes form a partition, reft3½k � 1� will contain the same tag as the
corresponding triangle belonging to the first or the second input mesh, for k ¼ 1; . . . ; nelt3. If the
two meshes overlap, then reft3½k � 1� will contain the value 1000� k1 þ k2 where k1 and k2 are
the user-supplied tags for the same triangle of the first and the second mesh respectively, for
k ¼ 1; . . . ;nelt3.

23: itrace – Integer Input

On entry: the level of trace information required from nag_mesh2d_join (d06dbc).

itrace � 0

No output is generated.

itrace � 1

Details about the common vertices, edges and triangles to both meshes are printed.

24: outfile – const char * Input

On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

25: fail – NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, nedge1 ¼ valueh i.
Constraint: nedge1 � 1.

On entry, nedge2 ¼ valueh i.
Constraint: nedge2 � 1.

On entry, nv1 ¼ valueh i.
Constraint: nv1 � 3.

On entry, nv2 ¼ valueh i.
Constraint: nv2 � 3.

NE_INT_2

On entry, nelt1 > 2� nv1� 1ð Þ: nelt1 ¼ valueh i, nv1 ¼ valueh i.
On entry, nelt2 > 2� nv2� 1ð Þ: nelt2 ¼ valueh i, nv2 ¼ valueh i.
On entry, the endpoints of edge j in the 1st mesh have the same index i: j ¼ valueh i, i ¼ valueh i.
On entry, the endpoints of edge j in the 2nd mesh have the same index i: j ¼ valueh i, i ¼ valueh i.
On entry, vertices 1 and 2 of triangle k in the 1st mesh have the same index i: k ¼ valueh i,
i ¼ valueh i.

d06dbc NAG C Library Manual

d06dbc.4 [NP3660/8]

On entry, vertices 1 and 2 of triangle k in the 2nd mesh have the same index i: k ¼ valueh i,
i ¼ valueh i.
On entry, vertices 1 and 3 of triangle k in the 1st mesh have the same index i: k ¼ valueh i,
i ¼ valueh i.
On entry, vertices 1 and 3 of triangle k in the 2nd mesh have the same index i: k ¼ valueh i,
i ¼ valueh i.
On entry, vertices 2 and 3 of triangle k in the 1st mesh have the same index i: k ¼ valueh i,
i ¼ valueh i.
On entry, vertices 2 and 3 of triangle k in the 2nd mesh have the same index i: k ¼ valueh i,
i ¼ valueh i.

NE_INT_4

On entry, conn1 i; jð Þ < 1 or conn1 i; jð Þ > nv1, where conn1 i; jð Þ denotes
conn1½3� j� 1ð Þ þ i� 1�: conn1 i; jð Þ ¼ valueh i, i ¼ valueh i, j ¼ valueh i, nv1 ¼ valueh i.
On entry, conn2 i; jð Þ < 1 or conn2 i; jð Þ > nv2, where conn2 i; jð Þ denotes
conn2½3� j� 1ð Þ þ i� 1�: conn2 i; jð Þ ¼ valueh i, i ¼ valueh i, j ¼ valueh i, nv2 ¼ valueh i.
On entry, edge1 i; jð Þ < 1 or edge1 i; jð Þ > nv1, where edge1 i; jð Þ denotes edge1½3� j� 1ð Þ þ i� 1�:
edge1 i; jð Þ ¼ valueh i, i ¼ valueh i, j ¼ valueh i, nv1 ¼ valueh i.
On entry, edge2 i; jð Þ < 1 or edge2 i; jð Þ > nv2, where edge2 i; jð Þ denotes edge2½3� j� 1ð Þ þ i� 1�:
edge2 i; jð Þ ¼ valueh i, i ¼ valueh i, j ¼ valueh i, nv2 ¼ valueh i.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

NE_MESH_ERROR

A serious error has occurred in an internal call to the restitching routine. Check the input of the two
meshes, especially the edges/vertices and/or the triangles/vertices connectivities. Seek expert help.

The function has detected a different number of coincident edges from the two meshes on the
partition interface valueh i valueh i. Check the input of the two meshes, especially the edges/vertices
connectivity.

The function has detected a different number of coincident triangles from the two meshes in the
overlapping zone valueh i valueh i. Check the input of the two meshes, especially the triangles/
vertices connectivity.

The function has detected only valueh i coincident vertices with a precision eps ¼ valueh i. Either
eps should be changed or the two meshes are not restitchable.

NE_NOT_CLOSE_FILE

Cannot close file valueh i.

NE_NOT_WRITE_FILE

Cannot open file valueh i for writing.

NE_REAL

On entry, eps ¼ valueh i.
Constraint: eps > 0:0.

7 Accuracy

Not applicable.

d06 – Mesh Generation d06dbc

[NP3660/8] d06dbc.5

8 Further Comments

nag_mesh2d_join (d06dbc) finds all the common vertices between the two input meshes using the relative
precision of the restitching argument eps. You are advised to vary the value of eps in the neighbourhood
of 0:001 with itrace � 1 to get the optimal value for the meshes under consideration.

9 Example

For this function two examples are presented. There is a single example program for nag_mesh2d_join
(d06dbc), with a main program and the code to solve the two example problems is given in the functions
ex1 and ex2.

Example 1 (ex1)

This example involves the unit square 0; 1½ �2 meshed uniformly, and then translated by a vector~u ¼ u1
u2

� �

(using nag_mesh2d_trans (d06dac)). This translated mesh is then restitched with the original mesh. Two
cases are considered:

(a) overlapping meshes (u1 ¼ 15:0, u2 ¼ 17:0),

(b) partitioned meshes (u1 ¼ 19:0, u2 ¼ 0:0).

The mesh on the unit square has 400 vertices, 722 triangles and its boundary has 76 edges. In the
overlapping case the resulting geometry is shown in Figures 1 and 2. The resulting geometry for the
partitioned meshes is shown in Figure 3.

Example 2 (ex2)

This example restitches three geometries by calling the function nag_mesh2d_join (d06dbc) twice. The
result is a mesh with three partitions. The first geometry is meshed by the Delaunay–Voronoi process
(using nag_mesh2d_delaunay (d06abc)), the second one meshed by an Advancing Front algorithm (using
nag_mesh2d_front (d06acc)), while the third one is the result of a rotation (by ��=2) of the second one
(using nag_mesh2d_trans (d06dac)). The resulting geometry is shown in Figures 4 and 5.

9.1 Program Text

/* nag_mesh2d_join (d06dbc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
* Mark 7b revised, 2004.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd06.h>
static double fbnd(Integer , double , double , Nag_Comm *);

extern int ex1(void), ex2(void);

#define EDGE1(I,J) edge1[3*((J)-1)+(I)-1]
#define EDGE2(I,J) edge2[3*((J)-1)+(I)-1]
#define EDGE3(I,J) edge3[3*((J)-1)+(I)-1]
#define EDGE4(I,J) edge4[3*((J)-1)+(I)-1]
#define EDGE5(I,J) edge5[3*((J)-1)+(I)-1]
#define CONN1(I,J) conn1[3*((J)-1)+(I)-1]
#define CONN2(I,J) conn2[3*((J)-1)+(I)-1]
#define CONN3(I,J) conn3[3*((J)-1)+(I)-1]
#define CONN4(I,J) conn4[3*((J)-1)+(I)-1]
#define CONN5(I,J) conn5[3*((J)-1)+(I)-1]
#define COOR1(I,J) coor1[2*((J)-1)+(I)-1]
#define COOR2(I,J) coor2[2*((J)-1)+(I)-1]
#define COOR3(I,J) coor3[2*((J)-1)+(I)-1]
#define COOR4(I,J) coor4[2*((J)-1)+(I)-1]

d06dbc NAG C Library Manual

d06dbc.6 [NP3660/8]

#define COOR5(I,J) coor5[2*((J)-1)+(I)-1]
#define TRANS(I,J) trans[6*((J)-1)+(I)-1]
#define LINED(I,J) lined[4*((J)-1)+(I)-1]
#define COORCH(I,J) coorch[2*(J-1)+I-1]
#define COORUS(I,J) coorus[2*(J-1)+I-1]

int main(void)
{

Vprintf("nag_mesh2d_join (d06dbc) Example Program Results\n");

ex1();
ex2();

return 0;
}

int ex1(void)
{

const Integer nvmax=900, nedmx=200, neltmx=2*nvmax+5, ntrans=1, mode=0;
double eps;
Integer exit_status, i, imax, itrace, itrans, jmax, jtrans, k, ktrans,

nedge1, nedge2, nedge3, nelt1, nelt2, nelt3, nv1, nv2, nv3, reftk;
Integer imaxm1, jmaxm1, ind;
char pmesh[2];
double *coor1=0, *coor2=0, *coor3=0, *trans=0;
Integer *conn1=0, *conn2=0, *conn3=0, *edge1=0,

*edge2=0, *edge3=0, *itype=0, *reft1=0, *reft2=0, *reft3=0;
NagError fail;

INIT_FAIL(fail);
exit_status = 0;

Vprintf("\nExample 1\n\n");

/* Skip heading in data file */

Vscanf("%*[^\n] ");
Vscanf("%*[^\n] ");

/* Read the mesh: coordinates and connectivity of the 1st domain */

Vscanf("%ld", &nv1);
Vscanf("%ld", &nelt1);
Vscanf("%*[^\n] ");

nv2 = nv1;
nelt2 = nelt1;

imax = 20;
jmax = imax;
imaxm1 = imax - 1;
jmaxm1 = jmax - 1;
nedge1 = 2*(imaxm1 + jmaxm1);
nedge2 = nedge1;

/* Allocate memory */

if (!(coor1 = NAG_ALLOC(2*nv1, double)) ||
!(coor2 = NAG_ALLOC(2*nv2, double)) ||
!(coor3 = NAG_ALLOC(2*nvmax, double)) ||
!(trans = NAG_ALLOC(6*ntrans, double)) ||
!(conn1 = NAG_ALLOC(3*nelt1, Integer)) ||
!(conn2 = NAG_ALLOC(3*nelt2, Integer)) ||
!(conn3 = NAG_ALLOC(3*neltmx, Integer)) ||
!(edge1 = NAG_ALLOC(3*nedge1, Integer)) ||
!(edge2 = NAG_ALLOC(3*nedge2, Integer)) ||
!(edge3 = NAG_ALLOC(3*nedmx, Integer)) ||
!(itype = NAG_ALLOC(ntrans, Integer)) ||
!(reft1 = NAG_ALLOC(nelt1, Integer)) ||
!(reft2 = NAG_ALLOC(nelt2, Integer)) ||

d06 – Mesh Generation d06dbc

[NP3660/8] d06dbc.7

!(reft3 = NAG_ALLOC(neltmx, Integer)))
{

Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

for (i = 1; i <= nv1; ++i)
{

Vscanf("%lf", &COOR1(1,i));
Vscanf("%lf", &COOR1(2,i));
Vscanf("%*[^\n] ");

}

for (k = 1; k <= nelt1; ++k)
{

Vscanf("%ld", &CONN1(1,k));
Vscanf("%ld", &CONN1(2,k));
Vscanf("%ld", &CONN1(3,k));
Vscanf("%ld", &reftk);
Vscanf("%*[^\n] ");

reft1[k-1] = 1;
reft2[k-1] = 2;

}

Vscanf(" ’ %1s ’", pmesh);
Vscanf("%*[^\n] ");

/* the edges of the boundary */

ind = 0;

for (i = 1; i <= imaxm1; ++i)
{

++ind;
EDGE1(1,ind) = i;
EDGE1(2,ind) = i + 1;
EDGE1(3,ind) = 1;

}

for (i = 1; i <= jmaxm1; ++i)
{

++ind;
EDGE1(1,ind) = i*imax;
EDGE1(2,ind) = (i+1)*imax;
EDGE1(3,ind) = 1;

}

for (i = 1; i <= imaxm1; ++i)
{

++ind;
EDGE1(1,ind) = imax*jmax - i + 1;
EDGE1(2,ind) = imax*jmax - i;
EDGE1(3,ind) = 1;

}

for (i = 1; i <= jmaxm1; ++i)
{

++ind;
EDGE1(1,ind) = (jmax - i)*imax + 1;
EDGE1(2,ind) = (jmax - i - 1)*imax + 1;
EDGE1(3,ind) = 1;

}

for (ktrans = 0; ktrans < 2; ++ktrans)
{

/* Translation of the 1st domain to obtain the 2nd domain */
/* KTRANS = 0 leading to a domain overlapping */
/* KTRANS = 1 leading to a domain partition */

d06dbc NAG C Library Manual

d06dbc.8 [NP3660/8]

if (ktrans == 0)
{

itrans = imax - 5;
jtrans = jmax - 3;

}
else

{
itrans = imax - 1;
jtrans = 0;

}

itype[0] = 1;
TRANS(1, 1) = (double)itrans/(imax - 1.0);
TRANS(2, 1) = (double)jtrans/(jmax - 1.0);
itrace = 0;

/* nag_mesh2d_trans (d06dac).
* Generates a mesh resulting from an affine transformation
* of a given mesh
*/

nag_mesh2d_trans(mode, nv2, nedge2, nelt2, ntrans, itype, trans, coor1,
edge1, conn1, coor2, edge2, conn2, itrace, 0, &fail);

if (fail.code == NE_NOERROR)
{

for (i = 1; i <= nedge2; ++i) EDGE2(3, i) = 2;

/* Call to the restitching driver */

itrace = 0;
eps = 0.01;

/* nag_mesh2d_join (d06dbc).
* Joins together two given adjacent (possibly overlapping)
* meshes
*/

nag_mesh2d_join(eps, nv1, nelt1, nedge1, coor1, edge1, conn1, reft1,
nv2, nelt2, nedge2, coor2, edge2, conn2, reft2, &nv3,
&nelt3, &nedge3, coor3, edge3, conn3, reft3, itrace,
0, &fail);

if (fail.code == NE_NOERROR)
{

if (pmesh[0] == ’N’)
{

if (ktrans == 0)
{

Vprintf("The restitched mesh characteristics\n");
Vprintf("in the overlapping case\n");

}
else

{
Vprintf("in the partition case\n");

}
Vprintf(" nv =%6ld\n", nv3);
Vprintf(" nelt =%6ld\n", nelt3);
Vprintf(" nedge =%6ld\n", nedge3);

}
else if (pmesh[0] == ’Y’)

{

/* Output the mesh to view it using the
NAG Graphics Library */

Vprintf(" %10ld%10ld%10ld\n", nv3,
nelt3, nedge3);

for (i = 1; i <= nv3; ++i)
Vprintf(" %12.6e %12.6e\n",

COOR3(1,i), COOR3(2,i));

d06 – Mesh Generation d06dbc

[NP3660/8] d06dbc.9

for (k = 1; k <= nelt3; ++k)
Vprintf(" %10ld%10ld%10ld"

"%10ld\n", CONN3(1,k), CONN3(2,k),
CONN3(3,k), reft3[k - 1]);

for (k = 1; k <= nedge3; ++k)
Vprintf(" %10ld%10ld%10ld\n",

EDGE3(1,k), EDGE3(2,k), EDGE3(3,k));
}

else
{

Vprintf("Problem with the printing option Y or N\n");
exit_status = -1;
goto END;

}
}

else
{

Vprintf("Error from nag_mesh2d_join (d06dbc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
}

else
{

Vprintf("Error from nag_mesh2d_trans (d06dac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

END:

if (coor1) NAG_FREE(coor1);
if (coor2) NAG_FREE(coor2);
if (coor3) NAG_FREE(coor3);
if (trans) NAG_FREE(trans);
if (conn1) NAG_FREE(conn1);
if (conn2) NAG_FREE(conn2);
if (conn3) NAG_FREE(conn3);
if (edge1) NAG_FREE(edge1);
if (edge2) NAG_FREE(edge2);
if (edge3) NAG_FREE(edge3);
if (itype) NAG_FREE(itype);
if (reft1) NAG_FREE(reft1);
if (reft2) NAG_FREE(reft2);
if (reft3) NAG_FREE(reft3);

return exit_status;
}

int ex2(void)
{

const Integer nvmax=900, nedmx=200, neltmx=2*nvmax+5,
ntrans=1, nus=0, nvint=0, nvfix=0;

double eps;
Integer exit_status, i, itrace, j, k, l, ncomp, nedge1,

nedge2, nedge3, nedge4, nedge5, nelt1, nelt2, nelt3,
nelt4, nelt5, nlines, npropa, nqint, nv1, nv2, nv3, nv4,
nv5, nvb1, nvb2, mode;

char pmesh[2];
double *coor1=0, *coor2=0, *coor3=0, *coor4=0, *coor5=0,

*coorch=0, *coorus=0, *rate=0, *trans=0, *weight=0;
Integer *conn1=0, *conn2=0, *conn3=0, *conn4=0, *conn5=0,

*edge1=0, *edge2=0, *edge3=0, *edge4=0, *edge5=0, *itype=0,
*lcomp=0, *lined=0, *nlcomp=0, *numfix=0, *reft1=0, *reft2=0,
*reft3=0, *reft4=0, *reft5=0;

NagError fail;

d06dbc NAG C Library Manual

d06dbc.10 [NP3660/8]

Nag_Comm comm;

INIT_FAIL(fail);
exit_status = 0;

Vprintf("\nExample 2\n\n");

/* Skip heading in data file */

Vscanf("%*[^\n] ");

/* Build the mesh of the 1st domain */
/* Initialise boundary mesh inputs: */
/* the number of line and of the characteristic points of */
/* the boundary mesh */

Vscanf("%ld", &nlines);
Vscanf("%*[^\n] ");

/* Allocate memory */

if (!(coor1 = NAG_ALLOC(2*nvmax, double)) ||
!(coor2 = NAG_ALLOC(2*nvmax, double)) ||
!(coor3 = NAG_ALLOC(2*nvmax, double)) ||
!(coor4 = NAG_ALLOC(2*nvmax, double)) ||
!(coor5 = NAG_ALLOC(2*nvmax, double)) ||
!(coorch = NAG_ALLOC(2*nlines, double)) ||
!(coorus = NAG_ALLOC(1, double)) ||
!(rate = NAG_ALLOC(nlines, double)) ||
!(trans = NAG_ALLOC(6*ntrans, double)) ||
!(weight = NAG_ALLOC(1, double)) ||
!(conn1 = NAG_ALLOC(3*neltmx, Integer)) ||
!(conn2 = NAG_ALLOC(3*neltmx, Integer)) ||
!(conn3 = NAG_ALLOC(3*neltmx, Integer)) ||
!(conn4 = NAG_ALLOC(3*neltmx, Integer)) ||
!(conn5 = NAG_ALLOC(3*neltmx, Integer)) ||
!(edge1 = NAG_ALLOC(3*nedmx, Integer)) ||
!(edge2 = NAG_ALLOC(3*nedmx, Integer)) ||
!(edge3 = NAG_ALLOC(3*nedmx, Integer)) ||
!(edge4 = NAG_ALLOC(3*nedmx, Integer)) ||
!(edge5 = NAG_ALLOC(3*nedmx, Integer)) ||
!(itype = NAG_ALLOC(ntrans, Integer)) ||
!(lcomp = NAG_ALLOC(nlines, Integer)) ||
!(lined = NAG_ALLOC(4*nlines, Integer)) ||
!(numfix = NAG_ALLOC(1, Integer)) ||
!(reft1 = NAG_ALLOC(2*nvmax+5, Integer)) ||
!(reft2 = NAG_ALLOC(2*nvmax+5, Integer)) ||
!(reft3 = NAG_ALLOC(2*nvmax+5, Integer)) ||
!(reft4 = NAG_ALLOC(2*nvmax+5, Integer)) ||
!(reft5 = NAG_ALLOC(2*nvmax+5, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Characteristic points of the boundary geometry */

for (j = 1; j <= nlines; ++j)
{

Vscanf("%lf", &COORCH(1,j));
}

Vscanf("%*[^\n] ");

for (j = 1; j <= nlines; ++j)
{

Vscanf("%lf", &COORCH(2,j));
}

Vscanf("%*[^\n] ");

/* The lines of the boundary mesh */

d06 – Mesh Generation d06dbc

[NP3660/8] d06dbc.11

for (j = 1; j <= nlines; ++j)
{

for (i = 1; i <= 4; ++i) Vscanf("%ld", &LINED(i,j));
Vscanf("%lf", &rate[j - 1]);

}
Vscanf("%*[^\n] ");

/* The number of connected components */
/* on the boundary and their data */

Vscanf("%ld", &ncomp);
Vscanf("%*[^\n] ");

/* Allocate memory */

if (!(nlcomp = NAG_ALLOC(ncomp, Integer)))
{

Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

j = 1;

for (i = 1; i <= ncomp; ++i)
{

Vscanf("%ld", &nlcomp[i - 1]);
Vscanf("%*[^\n] ");
l = j + abs(nlcomp[i - 1]) - 1;
for (k = j; k <= l; ++k) Vscanf("%ld", &lcomp[k - 1]);
Vscanf("%*[^\n] ");
j += abs(nlcomp[i - 1]);

}

itrace = 0;

/* Call to the 2D boundary mesh generator */

/* nag_mesh2d_bound (d06bac).
* Generates a boundary mesh
*/

nag_mesh2d_bound(nlines, coorch, lined, fbnd, coorus, nus, rate, ncomp,
nlcomp, lcomp, nvmax, nedmx, &nvb1, coor1, &nedge1,
edge1, itrace, 0, &comm, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_mesh2d_bound (d06bac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Generate mesh using Delaunay-Voronoi method */

/* Initialise mesh control parameters */

itrace = 0;
npropa = 1;

/* nag_mesh2d_delaunay (d06abc).
* Generates a two-dimensional mesh using a Delaunay-Voronoi
* process
*/

nag_mesh2d_delaunay(nvb1, nvint, nvmax, nedge1, edge1, &nv1, &nelt1, coor1,
conn1, weight, npropa, itrace, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_mesh2d_delaunay (d06abc).\n%s\n", fail.message);
exit_status = 1;

d06dbc NAG C Library Manual

d06dbc.12 [NP3660/8]

goto END;
}

for (k = 1; k <= nelt1; ++k) reft1[k - 1] = 1;

/* Call the smoothing routine */

nqint = 10;
/* nag_mesh2d_smooth (d06cac).
* Uses a barycentering technique to smooth a given mesh
*/

nag_mesh2d_smooth(nv1, nelt1, nedge1, coor1, edge1, conn1, nvfix, numfix,
itrace, 0, nqint, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_mesh2d_smooth (d06cac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Build the mesh of the 2nd domain */

Vscanf("%ld", &nlines);
Vscanf("%*[^\n] ");

/* Characteristic points of the boundary geometry */

for (j = 1; j <= nlines; ++j) Vscanf("%lf", &COORCH(1,j));
Vscanf("%*[^\n] ");

for (j = 1; j <= nlines; ++j) Vscanf("%lf", &COORCH(2,j));
Vscanf("%*[^\n] ");

/* The lines of the boundary mesh */

for (j = 1; j <= nlines; ++j)
{

for (i = 1; i <= 4; ++i) Vscanf("%ld", &LINED(i,j));
Vscanf("%lf", &rate[j - 1]);

}
Vscanf("%*[^\n] ");

/* The number of connected components */
/* to the boundary and their data */

Vscanf("%ld", &ncomp);
Vscanf("%*[^\n] ");

j = 1;
for (i = 1; i <= ncomp; ++i)

{
Vscanf("%ld", &nlcomp[i - 1]);
Vscanf("%*[^\n] ");

for (k = j; k <= j+abs(nlcomp[i-1])-1; ++k)
Vscanf("%ld", &lcomp[k - 1]);

Vscanf("%*[^\n] ");
j += abs(nlcomp[i-1]);

}

Vscanf(" ’ %1s ’", pmesh);
Vscanf("%*[^\n] ");

itrace = 0;

/* Call to the 2D boundary mesh generator */

/* nag_mesh2d_bound (d06bac), see above. */
nag_mesh2d_bound(nlines, coorch, lined, fbnd, coorus, nus, rate, ncomp,

nlcomp, lcomp, nvmax, nedmx, &nvb2, coor2, &nedge2, edge2,

d06 – Mesh Generation d06dbc

[NP3660/8] d06dbc.13

itrace, 0, &comm, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_mesh2d_bound (d06bac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Generate mesh using the advancing front method */

itrace = 0;

/* nag_mesh2d_front (d06acc).
* Generates a two-dimensional mesh using an Advancing-front
* method
*/

nag_mesh2d_front(nvb2, nvint, nvmax, nedge2, edge2, &nv2, &nelt2, coor2,
conn2, weight, itrace, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_mesh2d_front (d06acc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

for (k = 1; k <= nelt2; ++k) reft2[k - 1] = 2;

/* Rotation of the 2nd domain mesh */
/* to produce the 3rd mesh domain */

itype[0] = 3;
TRANS(1, 1) = 6.0;
TRANS(2, 1) = -1.0;
TRANS(3, 1) = -90.0;
itrace = 0;
mode = 0;

/* nag_mesh2d_trans (d06dac), see above. */
nag_mesh2d_trans(mode, nv2, nedge2, nelt2, ntrans, itype, trans, coor2,

edge2, conn2, coor3, edge3, conn3, itrace, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_mesh2d_trans (d06dac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

nv3 = nv2;
nelt3 = nelt2;
nedge3 = nedge2;

for (k = 1; k <= nelt3; ++k) reft3[k - 1] = 3;

/* Restitching meshes 1 and 2 to form mesh 4 */

eps = 0.001;
itrace = 0;

/* nag_mesh2d_join (d06dbc), see above. */
nag_mesh2d_join(eps, nv1, nelt1, nedge1, coor1, edge1, conn1, reft1, nv2,

nelt2, nedge2, coor2, edge2, conn2, reft2, &nv4, &nelt4,
&nedge4, coor4, edge4, conn4, reft4, itrace, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_mesh2d_join (d06dbc).\n%s\n", fail.message);
exit_status = 1;
goto END;

d06dbc NAG C Library Manual

d06dbc.14 [NP3660/8]

}

/* Restitching meshes 3 and 4 to form mesh 5 */

itrace = 0;

/* nag_mesh2d_join (d06dbc), see above. */
nag_mesh2d_join(eps, nv4, nelt4, nedge4, coor4, edge4, conn4, reft4, nv3,

nelt3, nedge3, coor3, edge3, conn3, reft3, &nv5, &nelt5,
&nedge5, coor5, edge5, conn5, reft5, itrace, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_mesh2d_join (d06dbc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

if (pmesh[0] == ’N’)
{

Vprintf("The restitched mesh characteristics\n");
Vprintf(" nv =%6ld\n", nv5);
Vprintf(" nelt =%6ld\n", nelt5);
Vprintf(" nedge =%6ld\n", nedge5);

}
else if (pmesh[0] == ’Y’)

{

/* Output the mesh to view it using the NAG Graphics Library */

Vprintf(" %10ld%10ld%10ld\n", nv5, nelt5, nedge5);

for (i = 1; i <= nv5; ++i)
Vprintf(" %12.6e %12.6e\n",

COOR5(1,i), COOR5(2,i));

for (k = 1; k <= nelt5; ++k)
Vprintf("%10ld%10ld%10ld%10ld\n",

CONN5(1,k), CONN5(2,k), CONN5(3,k), reft5[k - 1]);

for (k = 1; k <= nedge5; ++k)
Vprintf(" %10ld%10ld%10ld\n",

EDGE5(1,k), EDGE5(2,k), EDGE5(3,k));
}

else
{

Vprintf("Problem with the printing option Y or N\n");
}

END:

if (coor1) NAG_FREE(coor1);
if (coor2) NAG_FREE(coor2);
if (coor3) NAG_FREE(coor3);
if (coor4) NAG_FREE(coor4);
if (coor5) NAG_FREE(coor5);
if (coorch) NAG_FREE(coorch);
if (coorus) NAG_FREE(coorus);
if (rate) NAG_FREE(rate);
if (trans) NAG_FREE(trans);
if (weight) NAG_FREE(weight);
if (conn1) NAG_FREE(conn1);
if (conn2) NAG_FREE(conn2);
if (conn3) NAG_FREE(conn3);
if (conn4) NAG_FREE(conn4);
if (conn5) NAG_FREE(conn5);
if (edge1) NAG_FREE(edge1);
if (edge2) NAG_FREE(edge2);
if (edge3) NAG_FREE(edge3);
if (edge4) NAG_FREE(edge4);
if (edge5) NAG_FREE(edge5);

d06 – Mesh Generation d06dbc

[NP3660/8] d06dbc.15

if (itype) NAG_FREE(itype);
if (lcomp) NAG_FREE(lcomp);
if (lined) NAG_FREE(lined);
if (nlcomp) NAG_FREE(nlcomp);
if (numfix) NAG_FREE(numfix);
if (reft1) NAG_FREE(reft1);
if (reft2) NAG_FREE(reft2);
if (reft3) NAG_FREE(reft3);
if (reft4) NAG_FREE(reft4);
if (reft5) NAG_FREE(reft5);

return exit_status;
}
static double fbnd(Integer i, double x, double y, Nag_Comm *pcomm)
{

double radius2, x0, y0, ret_val;

ret_val = 0.0;
switch (i)

{
case 1:

/* inner circle */

x0 = 0.0;
y0 = 0.0;
radius2 = 1.0;
ret_val = (x-x0)*(x-x0) + (y-y0)*(y-y0) - radius2;
break;

case 2:

/* outer circle */

x0 = 0.0;
y0 = 0.0;
radius2 = 5.0;
ret_val = (x-x0)*(x-x0) + (y-y0)*(y-y0) - radius2;
break;

}

return ret_val;
}

9.2 Program Data

Note 1: since the data file for this example is quite large only a section of it is reproduced in this document.
The full data file is distributed with your implementation.

d06dbc Example Program Data
Example 1

400 722 :NV1 NELT1
0.000000E+00 0.000000E+00

.

.

.
0.100000E+01 0.100000E+01 :COOR1(1:2,1:NV1)

1 2 22 0
.
.
.

379 400 399 0 :(CONN1(:,K), REFT, K = 1,...,NELT1)
’N’ : Printing option ’Y’ or ’N’
Example 2
9 :1st geometry NLINES (m)
2.0000 2.0000 1.0000

-1.0000 -2.2361 0.0000
0.0000 0.0000 0.0000 :(COORCH(1,1:m))

-1.0000 1.0000 0.0000
0.0000 0.0000 -2.2361

d06dbc NAG C Library Manual

d06dbc.16 [NP3660/8]

-1.0000 1.0000 2.2361 :(COORCH(2,1:m))
10 1 2 0 1.0000 10 2 9 2 1.0000
10 9 5 2 1.0000 10 5 6 2 1.0000
10 6 1 2 1.0000 10 3 8 1 1.0000
10 8 4 1 1.0000 10 4 7 1 1.0000
10 7 3 1 1.0000 :(LINE(:,j),RATE(j),j=1,m)
2 :NCOMP (n, number of contours)
5 :number of lines in contour 1
1 2 3 4 5 :lines of contour 1

-4 :number of lines in contour 2
9 8 7 6 :lines of contour 2
4 :2nd geometry NLINES (m)
2.0000 6.0000 6.0000 2.0000 :(COORCH(1,1:m))

-1.0000 -1.0000 1.0000 1.0000 :(COORCH(2,1:m))
19 1 2 0 1.0000 10 2 3 0 1.0000
19 3 4 0 1.0000 10 4 1 0 1.0000 :(LINE(:,j),RATE(j),j=1,m)
1 :NCOMP (n, number of contours)
4 :number of lines in contour 1
1 2 3 4 :lines of contour 1

’N’ :Printing option ’Y’ or ’N’

9.3 Program Results

nag_mesh2d_join (d06dbc) Example Program Results

Example 1

The restitched mesh characteristics
in the overlapping case
nv = 785
nelt = 1428
nedge = 152

in the partition case
nv = 780
nelt = 1444
nedge = 133

Example 2

The restitched mesh characteristics
nv = 643
nelt = 1133
nedge = 171

Figure 1
The boundary and the interior interfaces of the two partitioned squares geometry

d06 – Mesh Generation d06dbc

[NP3660/8] d06dbc.17

Figure 2
The interior mesh of the two partitioned squares geometry

Figure 3
The boundary and the interior interfaces (left); the interior mesh (right)

of the two overlapping squares geometry

Figure 4
The boundary and the interior interfaces of the double restitched geometry

d06dbc NAG C Library Manual

d06dbc.18 [NP3660/8]

Figure 5
The interior mesh of the double restitched geometry

d06 – Mesh Generation d06dbc

[NP3660/8] d06dbc.19 (last)

	d06dbc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	eps
	nv1
	nelt1
	nedge1
	coor1
	edge1
	conn1
	reft1
	nv2
	nelt2
	nedge2
	coor2
	edge2
	conn2
	reft2
	nv3
	nelt3
	nedge3
	coor3
	edge3
	conn3
	reft3
	itrace
	outfile
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INT_4
	NE_INTERNAL_ERROR
	NE_MESH_ERROR
	NE_NOT_CLOSE_FILE
	NE_NOT_WRITE_FILE
	NE_REAL

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

